Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis{3-carboxy-5-[(4-carboxy-phenyl)diazenyl]benzoato- κO^1 }cobalt(II) dihydrate

Liang Bai and Jun Zhao*

College of Mechanical & Material Engineering, China Three Gorges University, Yichang 443002, People's Republic of China Correspondence e-mail: junzhao08@126.com

Received 14 October 2011; accepted 30 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 15.0.

In the title complex, $[Co(C_{15}H_9N_2O_6)_2(H_2O)_4]\cdot 2H_2O$, the Co^{II} ion is located on an inversion center and is coordinated by two monodentate 3-carboxy-5-[(4-carboxyphenyl)diazenyl]benzo-ate ligands and four water molecules in a distorted octahedral geometry. In the crystal, intermolecular $O-H\cdots O$ hydrogen bonds link the molecules into a three-dimensional supra-molecular network.

Related literature

For background to coordination polymers, see: Kitagawa *et al.* (2004); Moulton & Zaworotko (2001).

Experimental

Crystal data [Co(C₁₅H₉N₂O₆)₂(H₂O)₄]·2H₂O

 $M_r = 793.51$

Mo $K\alpha$ radiation

 $0.26 \times 0.21 \times 0.18 \text{ mm}$

16990 measured reflections

3795 independent reflections 3435 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.61 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.055$

refinement

 $\Delta \rho_{\rm max} = 0.29$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.47$ e Å⁻³

Z = 2

Monoclinic, $P2_1/c$ a = 19.347 (10) Å b = 7.105 (3) Å c = 12.379 (6) Å $\beta = 103.020$ (9)° V = 1657.9 (14) Å³

Data collection

Bruker APEX CCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.858, T_{\max} = 0.896$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.105$ S = 1.023795 reflections 253 parameters 9 restraints

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4A\cdots O5^{i}$	0.82	1.82	2.605 (2)	160
$O6-H6A\cdots O1^{ii}$	0.82	1.78	2.574 (2)	164
$O7-H7A\cdots O3^{iii}$	0.83(1)	1.92 (1)	2.746 (2)	170 (3)
$O7 - H7B \cdot \cdot \cdot O1W^{iv}$	0.82	2.05	2.791 (2)	151
$O8-H8A\cdots O1$	0.82	1.98	2.697 (2)	145
$O8-H8B\cdots O1W$	0.87(1)	1.94 (1)	2.797 (2)	169 (2)
$O1W - H1WA \cdots O8^{v}$	0.85(1)	2.12(1)	2.957 (2)	169 (3)
$O1W-H1WB\cdots O3^{vi}$	0.85 (1)	2.15 (2)	2.937 (2)	155 (3)
Symmetry codes: (i)	$-x + 1, y + \frac{1}{2}$	$z_{1}, -z_{1} + \frac{3}{2};$ (ii)	$-x+1, y-\frac{1}{2}$	$-z + \frac{5}{2};$ (iii)

Symmetry codes: (1) -x + 1, $y + \frac{1}{2}$, $-z + \frac{2}{2}$; (1) -x + 1, $y - \frac{1}{2}$, $-z + \frac{2}{2}$; (11) -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (v) -x, $y + \frac{1}{2}$, $-z + \frac{5}{2}$; (vi) x, y, z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2481).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.

Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629-1658.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Acta Cryst. (2011). E67, m1689 [doi:10.1107/S1600536811045557]

Tetraaquabis{3-carboxy-5-[(4-carboxyphenyl)diazenyl]benzoato- κO^1 }cobalt(II) dihydrate

L. Bai and J. Zhao

Comment

The formation of coordination polymers is an active area of research as these compounds have potential uses in gas storage, molecular sieves, magnetism and so on (Kitagawa et al., 2004; Moulton & Zaworotko, 2001). During the synthesis of polymeric complexes using 5-[(4-carboxyphenyl)diazenyl] isophthalate (L) as bridging ligand, to our surprise, the title monomeric Co(II) complex was obtained.

The title complex is a centrosymmetric mononuclear complex. The Co^{II} ion, which is located on an inversion center, is six-coordinated by two carboxylate O atoms from two L ligands and four water O atoms, resulting in a distorted octahedral geometry (Fig. 1). In the L ligand, two benzene rings is almost coplanar and the dihedral angle is 4.62 (4)°. A three-dimensional supramolecular network structure is formed through the extended hydrogen bonding interactions between water molecules and carboxylate O atoms (Table 1, Fig. 2).

Experimental

A mixture of 5-[(4-carboxyphenyl)diazenyl]isophthalic acid (0.031 g, 0.1 mmol), Co(CH₃CO₂)₂.4H₂O (0.025 g, 0.1 mmol) and water (10 ml) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 393 K for 3 days and then cooled to room temperature at 5 K h⁻¹. Red prism crystals suitable for X-ray analysis were obtained.

Refinement

H atoms of water molecules were identified from a difference Fourier map and refined with a restraint of O - H = 0.85 (1) Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93, O—H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the 50% probability displacement ellipsoids. [Symmetry code: (A) -x, -y+1, -z+2.]

Fig. 2. The crystal packing of the title compound, showing the three-dimensional network structure formed by hydrogen bonding interactions (dashed lines). H atoms are omitted for clarity.

$Tetraaquabis {3-carboxy-5-[(4-carboxyphenyl) diazenyl] benzoato- \kappa O^{1} } cobalt (II) \ dihydrate$

2

F(000) = 818

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.61 \text{ mm}^{-1}$ T = 296 K

 $0.26\times0.21\times0.18~mm$

Prism, red

 $D_{\rm x} = 1.590 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4430 reflections

Crystal data

 $[Co(C_{15}H_9N_2O_6)_2(H_2O)_4] \cdot 2H_2O$ $M_r = 793.51$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.347 (10) Å b = 7.105 (3) Å c = 12.379 (6) Å $\beta = 103.020$ (9)° V = 1657.9 (14) Å³ Z = 2

Data collection

Bruker APEX CCD diffractometer	3795 independent reflections
Radiation source: fine-focus sealed tube	3435 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.055$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -25 \rightarrow 25$
$T_{\min} = 0.858, T_{\max} = 0.896$	$k = -9 \rightarrow 9$
16990 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.105$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0577P)^2 + 0.5749P]$ where $P = (F_o^2 + 2F_c^2)/3$
3795 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
253 parameters	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
9 restraints	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}^*/U_{\rm eq}$
Co1	0.0000	0.5000	1.0000	0.02445 (11)

	- 11 -	22 - 33	- 12	13
Atomic displa	acement parameters $(\AA^2$?)		
111 WA	0.01/0(11)	0.031 (3)	1.339 (2)	0.070
	0.0031(0) 0.0176(11)	0.557(4) 0.631(3)	1 339 (2)	0.070*
H1WB	0.0701(0) 0.0821(8)	0.190(3) 0.557(4)	0.919(2) 1 3010(10)	0.070*
110D H7A	-0.0701 (6)	0.420(4) 0.100(2)	1.2030(10)	0.070*
HSB	0.04442 (9)	0.3333(2) 0.420(4)	1.344.33 (12)	0.0409 (4)
01W	0.211/9(9) 0.04/42(0)	0.5170(2)	1 3//00 (12)	0.0267(4)
C8	0.3003	0.1037 0.5100(2)	0.60178 (14)	0.031° 0.0287 (4)
H13A	0.57544 (10)	0.1410(3)	1.22021 (13)	0.0429 (3)
C13	0.23232(9) 0.57344(10)	0.4/12(2) 0.1/16(3)	0.72194(14) 1 22021 (15)	0.0203(3) 0.0429(5)
1114A	0.4703	0.1940 0.4712 (2)	1.21/3 0.72104 (14)	0.035
U14 H14A	0.30393 (10)	0.1931 (4)	1.1/404 (10)	0.0401 (3)
C14	0.03/3	0.1933	1.0019	0.041
H11A	0.00397 (9)	0.1942 (3)	1.04323 (14)	0.0337 (4)
115A C11	0.1300	0.3210 0.1042 (2)	0.7372 1 04522 (14)	0.032°
ЦЗА	0.10290 (9)	0.4047 (2)	0.70033 (14)	0.0203 (3)
C3	0.3210	0.2703 0.4847(2)	0.7240 0.78822 (14)	0.041
U10 H10A	0.53409 (9)	0.2432 (3)	0.22200 (14)	0.0330 (4)
C10	0.09910(9) 0.53460(0)	0.0714(3) 0.2432(3)	1.20733(13)	0.0209(3) 0.0338(4)
C15	0.40430 (9)	0.2430(3)	1.00521(14) 1.20755(12)	0.0311(4) 0.0280(2)
114A C0	0.2320	0.3338	0.4070 1.06321.(14)	0.039
04 H4A	0.20340 (7)	0.5001 (2)	0.33300 (11)	0.0390 (3)
04	0.32179(0) 0.26546(7)	0.5752(2) 0.5081(2)	0.00120(13) 0.55360(11)	0.0208(3)
C6	0.13001(0) 0.32170(8)	0.4343(2) 0.3752(2)	0.37301(13) 0.88120(13)	0.0238(3)
C1	0.5547	0.4030	0.7247 0.07381 (12)	0.034
UJ H5A	0.30177(8)	0.4150 (5)	0.70003 (13)	0.0203 (3)
02	0.08073(7)	0.46577(19)	0.92030(10)	0.0340(3)
02	0.02309 (0)	0.1452(2) 0.48577(10)	1.13033(13)	0.0270(3)
11/D C12	0.0013	0.1921 0.1422 (2)	0.9072 1 15652 (12)	0.005
U/ H7B	-0.03319(7)	0.2493 (2)	0.91030 (12)	0.0455 (5)
07	-0.02210(7)	0.4430(2)	0.901/2(13)	0.0230(3) 0.0435(2)
C)	0.13233(7)	0.3030(3)	0.33330(11) 0.00172(12)	0.0455(4)
п/U	0.2000	0.5046	1.0232	0.052°
	0.27274 (8)	0.3904 (2)	0.94775 (13)	0.0203 (3)
ПбА	0.0949	0.3324	1.1300	0.030°
U0 H8A	0.03213 (0)	0.33320 (19)	1.14721 (10)	0.0504 (5)
08	0.41102(7) 0.05213(6)	0.2937(2) 0.35528(10)	1.02333(12) 1.14721(10)	0.0343(3)
N2	0.37430(7)	0.3211(2) 0.2037(2)	1.02325(12)	0.0314(3) 0.0345(3)
N1	0.17132(0) 0.20428(7)	0.4270(2) 0.2211(2)	1.07003(10)	0.0379(3)
HOA	0.7499	0.0212	1.5577	0.007^{*}
	0.71026(7)	0.0001 (2)	1.31409 (10)	0.0449 (4)
05	0.74386 (6)	0.0750(2)	1.15655 (10)	0.0380(3)
05	0.74596 (6)	0.0750(2)	1 15652 (10)	0.0280.(2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.01671 (17)	0.0366 (2)	0.02086 (17)	-0.00116 (11)	0.00589 (12)	-0.00045 (11)
O5	0.0253 (6)	0.0628 (9)	0.0262 (6)	0.0058 (6)	0.0061 (5)	-0.0019 (6)
O6	0.0285 (7)	0.0810 (10)	0.0242 (6)	0.0165 (7)	0.0040 (5)	0.0094 (6)

O1	0.0218 (6)	0.0720 (9)	0.0200 (6)	-0.0032 (6)	0.0049 (4)	0.0026 (6)
N1	0.0205 (7)	0.0448 (8)	0.0285 (7)	0.0055 (6)	0.0048 (5)	0.0014 (6)
N2	0.0219 (7)	0.0525 (9)	0.0280 (7)	0.0057 (7)	0.0033 (5)	0.0038 (6)
O8	0.0256 (6)	0.0478 (7)	0.0274 (6)	0.0015 (5)	0.0070 (5)	0.0016 (5)
C7	0.0215 (7)	0.0362 (8)	0.0205 (7)	-0.0001 (6)	0.0035 (6)	0.0003 (6)
O3	0.0310 (7)	0.0787 (10)	0.0258 (6)	0.0186 (7)	0.0057 (5)	0.0077 (7)
C2	0.0188 (7)	0.0340 (8)	0.0229 (7)	-0.0008 (6)	0.0064 (6)	-0.0016 (6)
O7	0.0344 (7)	0.0473 (8)	0.0529 (8)	-0.0135 (6)	0.0184 (6)	-0.0153 (6)
C12	0.0240 (8)	0.0352 (8)	0.0232 (8)	0.0031 (7)	0.0031 (6)	-0.0002 (6)
O2	0.0168 (6)	0.0630 (9)	0.0231 (6)	0.0034 (5)	0.0067 (5)	0.0014 (5)
C5	0.0210 (7)	0.0403 (9)	0.0256 (8)	0.0020 (7)	0.0092 (6)	-0.0011 (7)
C1	0.0173 (7)	0.0379 (8)	0.0229 (8)	-0.0027 (6)	0.0058 (6)	-0.0022 (6)
C6	0.0185 (7)	0.0347 (8)	0.0264 (8)	0.0021 (6)	0.0034 (6)	-0.0006 (6)
O4	0.0295 (7)	0.0689 (10)	0.0226 (6)	0.0052 (6)	0.0104 (5)	0.0056 (5)
C9	0.0214 (8)	0.0427 (10)	0.0284 (8)	0.0040 (7)	0.0036 (6)	0.0012 (7)
C15	0.0252 (8)	0.0374 (9)	0.0231 (7)	0.0013 (7)	0.0036 (6)	-0.0014 (6)
C10	0.0267 (8)	0.0503 (11)	0.0237 (8)	0.0057 (8)	0.0044 (6)	0.0070 (7)
C3	0.0173 (7)	0.0385 (9)	0.0234 (8)	0.0016 (6)	0.0038 (6)	-0.0005 (6)
C11	0.0252 (8)	0.0515 (11)	0.0257 (8)	0.0059 (8)	0.0074 (6)	0.0044 (7)
C14	0.0279 (9)	0.0834 (16)	0.0284 (9)	0.0098 (10)	0.0096 (7)	0.0080 (9)
C4	0.0216 (8)	0.0355 (8)	0.0219 (8)	0.0008 (6)	0.0054 (6)	-0.0003 (6)
C13	0.0289 (9)	0.0767 (15)	0.0226 (8)	0.0104 (9)	0.0050 (7)	0.0091 (9)
C8	0.0253 (8)	0.0393 (9)	0.0226 (8)	0.0028 (7)	0.0074 (6)	-0.0013 (6)
O1W	0.0532 (10)	0.0503 (8)	0.0350 (8)	0.0024 (7)	0.0051 (7)	-0.0050 (6)

Geometric parameters (Å, °)

2.0766 (15)	C12—C13	1.386 (2)
2.0766 (15)	C12—C11	1.392 (2)
2.0850 (15)	C12—C15	1.496 (2)
2.0850 (15)	O2—C1	1.253 (2)
2.1371 (14)	C5—C6	1.387 (2)
2.1371 (14)	C5—C4	1.396 (2)
1.220 (2)	C5—H5A	0.9300
1.307 (2)	O4—C8	1.311 (2)
0.8200	O4—H4A	0.8200
1.261 (2)	C9—C10	1.388 (2)
1.249 (2)	C9—C14	1.385 (3)
1.432 (2)	C10—C11	1.378 (2)
1.429 (2)	C10—H10A	0.9300
0.8200	C3—C4	1.396 (2)
0.867 (9)	С3—НЗА	0.9300
1.388 (2)	C11—H11A	0.9300
1.394 (2)	C14—C13	1.386 (3)
0.9300	C14—H14A	0.9300
1.213 (2)	C4—C8	1.490 (2)
1.401 (2)	C13—H13A	0.9300
1.511 (2)	O1W—H1WB	0.845 (10)
	$\begin{array}{l} 2.0766 \ (15) \\ 2.0766 \ (15) \\ 2.0850 \ (15) \\ 2.0850 \ (15) \\ 2.1371 \ (14) \\ 2.1371 \ (14) \\ 1.220 \ (2) \\ 1.307 \ (2) \\ 0.8200 \\ 1.261 \ (2) \\ 1.249 \ (2) \\ 1.432 \ (2) \\ 1.429 \ (2) \\ 0.8200 \\ 0.867 \ (9) \\ 1.388 \ (2) \\ 1.394 \ (2) \\ 0.9300 \\ 1.213 \ (2) \\ 1.401 \ (2) \\ 1.511 \ (2) \end{array}$	2.0766 (15) $C12-C13$ $2.0766 (15)$ $C12-C11$ $2.0850 (15)$ $C12-C15$ $2.0850 (15)$ $O2-C1$ $2.1371 (14)$ $C5-C6$ $2.1371 (14)$ $C5-C4$ $1.220 (2)$ $C5-H5A$ $1.307 (2)$ $O4-C8$ 0.8200 $O4-H4A$ $1.261 (2)$ $C9-C10$ $1.432 (2)$ $C10-C11$ $1.429 (2)$ $C10-H10A$ 0.8200 $C3-C4$ $0.867 (9)$ $C3-H3A$ $1.394 (2)$ $C14-C13$ 0.9300 $C14-H14A$ $1.213 (2)$ $C4-C8$ $1.401 (2)$ $C13-H13A$ $1.511 (2)$ $O1W-H1WB$

O7—H7B	0.8200	O1W—H1WA	0.847 (10)
O7—H7A	0.831 (9)		
O7 ⁱ —Co1—O7	180.0	С4—С5—Н5А	120.0
O7 ⁱ —Co1—O2	93.60 (6)	O2—C1—O1	124.44 (15)
O7—Co1—O2	86.40 (6)	O2—C1—C2	117.21 (15)
07 ⁱ —Co1—O2 ⁱ	86.40 (6)	O1—C1—C2	118.33 (14)
$07-C_01-02^i$	93.60 (6)	C5—C6—C7	120.21 (15)
0^{2} —Co1— $0^{2^{i}}$	180.0	C5—C6—N1	115.60 (14)
02^{-1} 02^{-1} 02^{-1}	92.09.(6)	C7—C6—N1	124 19 (15)
$07 - C_{21} - 08^{i}$	87.91 (6)	C8—O4—H4A	109.5
O_{i}^{2} Col O_{i}^{2}	85 55 (6)	C_{10} C_{9} C_{14}	119 78 (16)
02 - 01 - 08	94.45 (6)	$C_{10} = C_{10} = C_{10}$	124.45 (15)
	94.45 (0)	C10 - C2 - N2	124.45 (15)
07 ¹ —Co1—O8	87.91 (6)	C14—C9—N2	115.//(15)
0^{\prime} —Col—O8	92.09 (6)	05-015-06	122.68 (16)
02	94.45 (6)	05	124.70 (15)
O2 ¹ —Co1—O8	85.55 (6)	O6—C15—C12	112.62 (14)
O8 ⁱ —Co1—O8	180.00 (4)	C11—C10—C9	120.31 (16)
С15—О6—Н6А	109.5	C11—C10—H10A	119.8
N2—N1—C6	114.14 (13)	С9—С10—Н10А	119.8
N1—N2—C9	113.99 (14)	C4—C3—C2	120.03 (15)
Co1—O8—H8A	109.5	С4—С3—НЗА	120.0
Co1—O8—H8B	107.1 (19)	С2—С3—НЗА	120.0
H8A—O8—H8B	108.1	C10-C11-C12	120.16 (16)
C2—C7—C6	120.20 (15)	C10-C11-H11A	119.9
С2—С7—Н7С	119.9	C12—C11—H11A	119.9
С6—С7—Н7С	119.9	C9—C14—C13	119.95 (17)
C7—C2—C3	119.73 (14)	C9—C14—H14A	120.0
C7—C2—C1	119.85 (14)	C13—C14—H14A	120.0
C3—C2—C1	120.41 (14)	C5—C4—C3	119.77 (15)
Co1—O7—H7B	109.5	C5—C4—C8	119.68 (15)
Co1—O7—H7A	127.2 (15)	C3—C4—C8	120.55 (15)
H7B—O7—H7A	118.8	C12—C13—C14	120.34 (17)
C13—C12—C11	119.45 (15)	С12—С13—Н13А	119.8
C13—C12—C15	120.04 (15)	C14—C13—H13A	119.8
C11—C12—C15	120.52 (15)	O3—C8—O4	123.37 (16)
C1—O2—Co1	126.97 (12)	O3—C8—C4	124.27 (16)
C6—C5—C4	120.06 (15)	O4—C8—C4	112.36 (15)
С6—С5—Н5А	120.0	H1WB—O1W—H1WA	110.4 (16)
C6—N1—N2—C9	-178.97 (15)	C13—C12—C15—O6	-6.3 (3)
C6—C7—C2—C3	-0.9 (3)	C11—C12—C15—O6	173.41 (17)
C6—C7—C2—C1	178.26 (16)	C14—C9—C10—C11	-0.1 (3)
07^{i} —Co1—O2—C1	69.81 (16)	N2—C9—C10—C11	179.18 (19)
$07 - C_0 1 - 02 - C_1$	-110 19 (16)	C7-C2-C3-C4	03(3)
$O_{1}^{0} = O_{1}^{0} = O_{2}^{0} = O_{1}^{0}$	161.62 (16)	C_1 C_2 C_3 C_4	-178.80(15)
08 - 01 - 02 - 01	101.02 (10)	$C_1 - C_2 - C_3 - C_4$	-1/0.09 (13)
	-18.38 (16)	C9—C10—C11—C12	0.4 (3)
C01—O2—C1—O1	-0.7 (3)	C13—C12—C11—C10	0.2 (3)

Co1—O2—C1—C2	177.75 (11)	C15-C12-C11-C10	-179.49 (18)
C7—C2—C1—O2	-173.46 (16)	C10-C9-C14-C13	-0.7 (3)
C3—C2—C1—O2	5.7 (2)	N2-C9-C14-C13	180.0 (2)
C7—C2—C1—O1	5.1 (3)	C6—C5—C4—C3	-0.5 (3)
C3—C2—C1—O1	-175.70 (17)	C6—C5—C4—C8	178.47 (16)
C4—C5—C6—C7	-0.2 (3)	C2—C3—C4—C5	0.4 (3)
C4—C5—C6—N1	-179.43 (16)	C2—C3—C4—C8	-178.52 (15)
C2—C7—C6—C5	0.9 (3)	C11—C12—C13—C14	-1.0 (3)
C2C7C6N1	-179.93 (16)	C15-C12-C13-C14	178.7 (2)
N2—N1—C6—C5	176.98 (16)	C9-C14-C13-C12	1.2 (4)
N2—N1—C6—C7	-2.3 (3)	C5—C4—C8—O3	177.86 (18)
N1—N2—C9—C10	6.9 (3)	C3—C4—C8—O3	-3.2 (3)
N1—N2—C9—C14	-173.76 (19)	C5—C4—C8—O4	-2.3 (2)
C13—C12—C15—O5	174.2 (2)	C3—C4—C8—O4	176.63 (16)
C11—C12—C15—O5	-6.1 (3)		
Symmetry codes: (i) $-x$, $-y+1$, $-z+2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O4—H4A···O5 ⁱⁱ	0.82	1.82	2.605 (2)	160
O6—H6A…O1 ⁱⁱⁱ	0.82	1.78	2.574 (2)	164
O7—H7A···O3 ^{iv}	0.83 (1)	1.92 (1)	2.746 (2)	170 (3)
O7—H7B···O1W ^v	0.82	2.05	2.791 (2)	151
O8—H8A…O1	0.82	1.98	2.697 (2)	145
O8—H8B…O1W	0.87 (1)	1.94 (1)	2.797 (2)	169 (2)
O1W—H1WA···O8 ^{vi}	0.85 (1)	2.12 (1)	2.957 (2)	169 (3)
O1W—H1WB···O3 ^{vii}	0.85 (1)	2.15 (2)	2.937 (2)	155 (3)

Symmetry codes: (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) -*x*+1, *y*-1/2, -*z*+5/2; (iv) -*x*, *y*-1/2, -*z*+3/2; (v) *x*, -*y*+1/2, *z*-1/2; (vi) -*x*, *y*+1/2, -*z*+5/2; (vii) *x*, *y*, *z*+1.

Fig. 1

Fig. 2